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Hyperbolic Injection Issues for MXER-assisted payloads 

Kirk Sorensen 
In-Space Propulsion Technologies Project 

NASA Marshall Space Flight Center 
Huntsville, AL 35812 

Momentum-exchange/electrodynamic reboost (MXER) tether technology is currently being 
pursued to dramatically lower the launch mass and cost of interplanetary scientific spacecraft. A 
spacecraft boosted from LEO to a high-energy orbit by a MXER tether has most of the orbital 
energy it needs to escape the Earth’s gravity well. However, the final targeting of the spacecraft to 
its eventual trajectory, and some of the unique issues brought on by the tether boost, are the 
subjects of this paper. 

Introduction 

MXER tether technology is currently being developed 
by NASA through the Office of Space Science (OSS) 
because MXER tether technology has the potential to 
augment the performance of most interplanetary 
missions. The MXER tether concept is as follows: 

A MXER tether facility consists of a -100 km high- 
strength tether with a number of “control stations” 
distributed near the “ballast” end of the tether and a 
“catch mechanism” on the “tip” of the tether. The tether 
facility is in an equatorial Earth orbit of roughly 400 km 
perigee by 8800 km apogee. The tether rotates fairly 
rapidly (about once every 6 minutes) such that its tip 
can match position and velocity (but not acceleration) 
with a spacecraft in a circular equatorial low Earth orbit 
(LEO). During this moment of proximity, the tether 
“catches” the spacecraft, and the spacecraft is 
accelerated by the tether for next few minutes. 
Approximately 3 minutes (1/2 rotation) later, the 
payload is released from the tether into a new, higher- 
energy orbit. During this momentum-exchange process, 
the payload gains substantial orbital angular momentum 
and energy at the expense of the tether facility. 

The tether facility now must restore the energy and 
momentum imparted to the payload. It does this in a 
novel manner by driving electrical current through the 
tether, against the induced voltage gradient, in order to 

provide thrust to reboost the tether facility. The power 
required to drive the electrical current is provided by 
solar arrays; the momentum comes from an interaction 
with the Earth’s magnetic field. Simply put, the tether 
pushes against the Earth using energy collected from the 
Sun. 

Calculating the Conditions for Hyperbolic Injection 

The payload, once “thrown” by the tether, is in a highly 
elliptical Earth orbit. Current M E R  tether designs at 
NASA are focusing on throwing the payload into an 
equatorial geosynchronous transfer orbit (GTO). The 
GTO orbit has its perigee at LEO altitudes (400-500 
km) and its apogee at GEO altitude (36,000 km). For 
communications satellites bound for GEO, the final 
stage of the process would be to coast until the 
spacecraft reaches apogee of its GTO orbit and then use 
an onboard chemical propulsion system to circularize 
their orbits at the GEO altitude. 

However, for spacecraft destined for interplanetary 
trajectories, they must configure their orbits for a 
hyperbolic Earth escape trajectory. The conditions for 
this hyperbolic injection are calculated from the 
interplanetary trajectory previously determined for that 
mission. The Mars Exploration Rover-A, launched on 
June 10, 2003, will be used as an example. The first 
and second stages of its Delta I1 booster placed it into a 
low Earth orbit. Then a third stage attached to the 
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spacecraft ignited to send it on a hyperbolic Earth 
escape trajectory that would take it to Mars. For that The problem of calculating an orbit given two position 
particular launch date, JPL mission planners had vectors and time-of-flight is well known in 
concluded on an arrival at Mars of January 4, 2004. astrodynamics as Lambert’s problem and there are a 
Based on those two dates (June 10 and January 4), number of iterative solutions available to quickly find 
mission planners calculated the positions of Earth and an answer. Given the position vector of Earth on June 
Mars and also the time-of-flight (208 days) between the 10, 2003 and the position vector of Mars on January 4, 
departure body (Earth) and the arrival body (Mars). 2004 and a time-of-flight of 208 days, the orbit that 
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Figure 1: “Porkchop” Plot of Earth-Mars launch opportunities in 2003. 
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corresponds to those conditions can be calculated, and 
more importantly, the orbital velocity at each of those 
position vectors can be calculated. If the orbital 
velocity vector of the Earth is subtracted from the 
orbital velocity vector of the spacecraft on the departure 
day, a relative velocity vector is calculated. This 
relative velocity vector, often called the “V-infinity” 
vector, is a three-dimensional representation of the 
departure vector the spacecraft must achieve in order to 
reach its destination on the desired day. 

In summary, the procedure to obtain the V, vectors for 
hyperbolic departure is: 

1. 

2. 

3. 

4. 

5. 

For a given set of departure and arrival dates 
between two objects, calculate their position and 
velocity vectors and the time-of-flight. The 
position vectors will be used in Lambert’s problem 
and the velocity vectors will be used to solve for 
the V, vectors. 
Use one of the Lambert problem solution 
techniques (universal variable, P-iteration, etc.) to 
calculate velocity vectors at start and end of the 
trajectory. The initial position and velocity vectors 
of the trajectory can then be used to calculate the 
transfer orbit, if desired. 
Subtract the departure planet’s velocity vector from 
the transfer orbit’s initial velocity vector to obtain 
the relative velocity vector at departure, or V, 
vector. Subtract the destination planet’s velocity 
vector from the transfer orbit’s final velocity vector 
to calculate the V, vector at arrival. 
Transform the V, vectors through a matrix 
representing the orientation of the planet’s pole to 
transform the vector from heliocentric-ecliptic 
space to planetocentric space. This transformation 
will not change the magnitude of the vector, only 
its orientation. 
Transform the V, vectors from Cartesian to 
spherical coordinates to obtain the C3 (vector 
magnitude squared), right ascension angle 
(longitude), and declination angle (latitude). 

Of course, this entire process presupposes that one has 
already found the optimal departure and atrival dates. 
Optimal is a relative term; although minimizing the 
energy required to fly the trajectory is a paramount 
concern, there are additional issues, such as launch 
window width, landing conditions at the arrival planet, 
angles between the Earth and Sun during the trajectory, 
and a host of other concerns that modify the definition 
of optimum. 

In order to understand the trade space quickly, mission 
planners use contour plots affectionately referred to as 
“porkchop” plots to visualize the trade space of 

departure and arrival dates between two planets, as 
shown in Figure 1. 

This example of a “porkchop” plot shows that the 
departure energies for Earth reach a minimum between 
about May 20,2003 and June 22,2003. A launch on or 
about these dates leads to a Mars arrival between about 
November 15, 2003 and January 25, 2004.0n June 10, 
2003, the third stage of the Delta I1 rocket injected the 
Mars Exploration Rover-A spacecraft into a hyperbolic 
orbit that left the Earth into interplanetary space; the 
outgoing asymptote of that hyperbola was aligned with 
the previously calculated V, vector. 

Achieving the Calculated Hyperbolic Injection 

Once the V, vector is known the problem then becomes 
one of injecting the spacecraft from some Earth orbit 
into the desired hyperbolic orbit. There is some degree 
of flexibility in this because there are a number of 
hyperbolas whose outgoing asymptotes are identical, as 
shown in Figure 2. In fact, one can imagine taking a 
hyperbola of a given periapsis radius and eccentricity 
and rotating it about the outgoing asymptote to generate 
a locus of injection points to achieve one of these 
departure hyperbolas. 

If one imagines the center of this locus projected on the 
surface of the Earth, it would represent the point that is 
the vectorial inverse of the outgoing asymptote (V,). 
Hence, if one had calculated a trajectory like that of the 
MER-A, with a DLA (declination of the launch 
asymptote) of 2.63”, the projection of the center of the 
locus on the surface of the Earth would be at 2.63” south 
latitude. 

The angular radius of the locus (later referred to as the 
angular extent) is given by the turning angle in the 
hyperbola. This angular extent of the locus is small for 
hyperbolic orbits with low eccentricity and grows for 
orbits with higher eccentricity, as shown by the 
following table. 

C3 value Orbital Angular extent of 
&m21s21 Eccentricitv locus (ded 

1 1.017 10.58 
2 1.035 14.85 
4 1.069 20.72 
8 1.138 28.53 
12 1.207 34.08 
16 1.277 38.43 
20 1.346 42.00 
40 1.691 53.75 
80 2.383 65.18 

Turning angle calculated for a perigee radius of 
1.08 Earth radii (510.3 km altitude). - -. . 
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locus of 

Figure 2: Graphical depiction of a family of hyperbolas that parallel the departure asymptote'. 

However, most interplanetary trajectories require 
enough C3 to yield a significant locus angular extent. 
C3 values for direct injection range from 6-12 km2/sz for 
Venus, 8-20 km21s2 for Mars, and 75-90 km2/s2 for 
Jupiter; additionally, these values are for good launch 
conditions and low-energy trajectories. Direct injection 
to planets beyond Jupiter is rarely contemplated because 
the C3 values are so high that gravity assist trajectories 
from Venus andor Jupiter give vastly better 
performance, 

Returning to the original problem, it is assumed that the 
MXER tether facility will boost the payload up to an 
equatorial GTO with an arbitrary orientation within that 
equatorial plane. For sake of initial simplicity, assume 
that the line of apsides of the GTO (line between 
periapsis and apoapsis) can be whatever is required. 

Recall the locus of hyperbolic injection points is formed 
by the locations of periapses of the outgoing hyperbola. 
If the change in velocity (AV) between the elliptical 
GTO and the hyperbolic orbit can be assumed to be 
instantaneous, then the GTO and the hyperbolic orbit 
will have identical periapses. For the tether-injected 
GTO, that periapsis will lie directly over the equator, 
since the GTO is equatorial Rnt there is an zddithz! 

constraint that will nearly always force the orbit to be 
non-equatorial, and that is the requirement that the orbit 
pass directly over the center of the locus. 

Figure 3: Locus of injection points and departure 
asymptotes ior a On cieciination injection. 
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It can be deduced from examination that any of the 
hyperbolas emanating from the locus is coplanar with 
the outgokg asymptote an3 the center of the locus itself. 
Hence, if the injection AV is desired to be coplanar with 
the previous elliptical orbit (and that is strongly 
desirable to minimize AV) then the hyperbolic orbit, and 
the elliptical orbit that preceded it, must pass over the 
center of the injection locus. 

This levies an additional constraint on a payload that is 
in an initially equatorial orbit. Unless the declination of 
the launch asymptote is exactly 0" (as shown in Figure 
3) it will be necessary to execute a AV to change the 
orbital inclination of the GTO. The inclination 
necessary is a function of the departure C3 and the 
DLA. 

If inclination changes are conducted at apoapsis of the 
elliptical orbit (which is strongly desired to minimize 
AV), then the periapsis of the orbit will still remain over 
the equator. Explained another way, the equatorial 
elliptical orbit does not have a defined line of nodes (the 
line formed from the intersection of the orbit and the 
equatorial plane). When an inclination-change AV is 
executed at apoapsis, the orbit is no longer equatorial, 
but the line of nodes (which is always in the equatorial 
plane) and the line of apsides are collinear. 

Figure 4: Locus of iqjection points and departure 
asymptotes for a -30" declination showing two 
possible equatorial injection opportunities. 

Hence, the heart of the problem is to define a hyperbolic 
injection opportunity that passes over the equator. If the 
angular extent (in degrees) of the locus of hyperbolic 
injection is greater than the declination of the launch 
asymptote, then the locus will pass over the equatorial 
piane in at ieast two iocations, as shown in Figure 4, and 

two equatorial injections will be possible. If the radius 
of the locus is equal to the declination of the launch 
asymptote, then the locus will pass over the equatorial 
plane in only one location, and the only possible orbit to 
achieve equatorial injection will be polar. And finally, 
if the radius of the locus is less than the declination 
angle, then the locus will never pass over the equator, 
and equatorial injection into that hyperbolic trajectory 
will be impossible. This case is shown in Figure 5.  

In simpler terms, there will be some trajectories whose 
hyperbolic departures are such that a tether-boosted 
spacecraft would be extremely penalized to try to 
achieve them. Fortunately, most trajectories of interest 
do not fall in this category. 

Figure 5: Locus of injection points and departure 
asymptotes for a -45" declination showing no feasible 
equatorial injection opportunities. 

Most solar system targets of interest, such as Venus, 
Mars, and Jupiter, lie roughly in the ecliptic plane, and 
the Earth is only tilted 23.5" degrees to the ecliptic. If 
all solar system targets were perfectly coplanar, then 
injection declination would range from a maximum of 
23.5" to a minimum of -23.5" throughout the year. 

However, since Venus (3.4"), Mars (1 .go), Jupiter (1.3") 
and other targets are not coplanar with the Earth, 
heliocentric plane change is a factor in interplanetary 
injection. Sometimes this plane change requirement can 
reduce the injection declination; sometimes it can make 
it much higher. 

Additionally, most of these injection trajectories have 
enough C3 requirements to cause their loci of 
hyperbolic injection points to have a fairly large angular 
cxienis. This iiieaiis iiiai rnosi of these trajectories nave 
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feasible equatorial injection opportunities. For instance, 
MER-A, launched on June 10, 2003, had a DLA of 
2.63" and a C3 of 8.9 h2!s2; with that C3, the angular 
extent of the locus is 29.5" at an injection altitude of 510 
km. 

Calculating the Orbital Elements of the Injection 
Hyperbola 

Given a desired C3, right ascension, and declination of 
the hyperbolic injection asymptote, the following 
procedure will yield the orbital elements of a hyperbolic 
orbit that will match that departure asymptote and have 
an equatorial periapsis. 

To begin, the desired periapsis altitude must be chosen. 
AV requirements will be minimized if the periapsis 
altitude is minimized, but this altitude must be above 
any atmosphere as well. Once determined, the periapsis 
velocity can be calculated from the C3 and periapsis 
radius using the equation: 

v p =  c3+- i :  
This procedure to calculate the orbital elements is then: 

1. 

2. 

3. 

4. 

5.  

6. 

Eccentricity (e) of the hyperbola is calculated from 
c3. 
Semi-major axis (a) of the hyperbola (which will be 
negative) is calculated from periapsis radius and 
eccentricity. 
True anomaly (u) will be 0" since the injection will 
be at periapsis. 
Argument of the periapsis (0) will be 0" or 180" 
since the line of apsides lies in the equatorial plane. 
The orbital inclination (i) is calculated from 
spherical trigonometry using the angular extent of 
the departure locus and the declination of the 
launch asymptote. 
Right ascension of the ascending node (Q) is also 
calculated using spherical trigonometry from the 
angular extent of the departure locus, the 
declination of the launch asymptote, and the right 
ascension of the launch asymptote. 

First calculate eccentricity of the hyperbola from the C3 
of the injection asymptote, the radius of periapsis, and 
the gravitational parameter of the attracting body. 

C3 rp 
e=l+-  

P 

The eccentricity should be greater than one since the 
orbit is a hyperbola. 

Next, calculate semi-major axis from periapsis radius 
and eccentricity: 

u = rp( l -e )  

The semi-major axis will have a negative distance since 
the orbit is hyperbolic. 

Spherical trigonometry allows us to calculate the orbital 
inclination for the special case of an equatorial 
periapsis. The angular extent of the injection locus is 
given by 

1 cos7 =- 
e 

If the declination (4 )  of the injection asymptote is less 
than the angular extent of the injection locus, then a 
solution is feasible, as shown in Figure 4. In this case, 
the orbital inclination can be calculated from the 
following expression. 

. . sin4 sinz =- 
sin 7 

The right ascension of the ascending node is calculated 
in a similar way from spherical trigonometry. 

In this equation, 8 represents the right ascension of the 
hyperbolic asymptote and x is present to "flip" the 
ascending node to the opposite side of the planet from 
the hyperbolic asymptote. Recall that there are two 
equatorial solutions to departure-one will have a 
prograde inclination and one will have a retrograde 
inclination. Obviously, only a prograde inclination 
would be acceptable for a real injection case. Hence, it 
must determined whether the hyperbolic injection will 
take place at the ascending node or the descending node 
of the orbit. 

This is quite simply done. If the declination of the 
hyperbolic asymptote is negative, then the injection 
locus will lie in the Northern Hemisphere, and a 
prograde injection will take place on the descending 
node. Conversely, if the declination is positive, then the 
: x u s  wiii iie in the Southern Hemlsphere, and a 
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prograde injection will take place on the ascending 
node. 

Since the orbital element of interest is the right 
ascension of the ascending node, it is necessary to 
"flip" R. 180" in the case of negative declination. Also, 
the argument of periapsis, o, will be 0" for the positive 
declination, ascending node case and 180" for the 
negative declination, descending node case. 

With these six orbital elements, it is also straightforward 
to quickly calculate the radius and velocity vectors at 
periapsis for equatorial injection: 

r, = sr, COSQ 

ry = sr, sin Q 

rz =O.O 

vx = -svP sin 52 cos i 
v, = sv, cos cos i 
vz = svp sin i 

In these equations, s is a parameter that is 1 when o is 
0" and is -1 when w is 180". It represents the 
simplification that is possible when w is either 0" or 
180". All terms involving sin w drop out and terms 
involving cos w are either multiplied by 1 or -1. 

Summary 

The problem of hyperbolic injection from a tether- 
assisted equatorial orbit essentially boils down to a 
problem in defining a hyperbolic injection that has an 
equatorial periapsis. It has been shown that equatorial 
solutions are possible when the angular extent of the 
hyperbolic injection locus is greater than the declination 
of the launch asymptote. There are two solutions, 
prograde and retrograde, of which the prograde solution 
is obviously the most desirable. The orbital elements of 
this injection hyperbola are obtainable from the 
orientation of the departure asymptote via spherical 
trigonometry. These orbital elements can then be used 
to construct the radius and velocity vectors of this 
departure hyperbola. 
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